
An Introduction of Burrows-
Wheeler Transform (BWT)
and Its Variants

Wing-Kai Hon

39th Symposium on Combinatorial Mathematics and
Computational Theory (2022/6/24)

Outline

� Pattern Matching & Text Indexing

� Suffix Tree and Suffix Array

� BWT

� 2BWT, Permuterm, XBW

� pBWT

� GBWT

Pattern Matching Problem

Basic Pattern Matching Problem

� Input:
(1) a text T
(2) a pattern P

� Output:
(1) # of times P occurs in T
(II) locations in T of where P occurs

Pattern Matching Problem

Basic Pattern Matching Problem

Example:
� Input:

T banana
P an

� Output:
P occurs 2 times in T
P occurs at positions 2 and 4

Text Indexing Problem

How good can we solve basic pattern
matching?

� Denote |T| = t and |P| = p

� KMP [Knuth & Pratt 70; Morris 70]
[Knuth, Morris, Pratt 77]

processing: O(t+p) time

Text Indexing Problem

Basic Text Indexing Problem

� Input:
a text T

� Output:
an index structure Δ to represent T

such that
given any query pattern P,
we can solve pattern matching quickly

Text Indexing Problem

Basic Text Indexing Problem

� Key Observation:
Each time P occurs in T, P occurs as
the prefix of a distinct suffix of T

T banana
P an

T banana
P an

Text Indexing Problem
How good can we solve text indexing?

� Denote |T| = t and |P| = p

� Suffix Tree [McCreight 76; Weiner 73]

space: O(t)
query: O(p+occ) time

� Suffix Array [Manber & Myers 93]

space: O(t)
query: O(p + log t + occ) time

Suffix Tree of banana$

7

$
a

6

$
n
a

4

$

2

a
n

$

1

ba
n
a
na
$

na

5
$

3

na
$

Suffix Tree of banana$

n

7

$
a

6

$
n
a

4

$

2

a
n

$

1

ba
n
a
na
$

a

5
$

3

na
$

Query: P = !"

Suffix Array of banana$

j SA[j] suffixes of banana$
1 7 $
2 6 a $
3 4 a n a $
4 2 a n a n a $
5 1 b a n a n a $
6 5 n a $
7 3 n a n a $

Suffix Array of banana$

j SA[j] suffixes of banana$
1 7 $
2 6 a $
3 4 a n a $
4 2 a n a n a $
5 1 b a n a n a $
6 5 n a $
7 3 n a n a $

occurrences of P occupy a contiguous range in SA
èWe call this the suffix range of P

Text Indexing Problem

Is Suffix Tree optimal?

� Σ = alphabet; |Σ| = σ

� Minimal space to represent T
= t characters = O(t log σ) bits

� Suffix Tree of T
= t integers = O(t log t) bits

Text Indexing Problem

Can we achieve optimal space?

� BWT [Burrows & Wheeler 94]

space: O(t log σ) bits
query: not supported

� BWT + i [Ferragina & Manzini 00]

space: O(t log σ) bits
query: O(p log σ + occ logε t) time

BWT of banana$

j BWT[j] cyclic shifts of banana$
1 a $ b a n a n a
2 n a $ b a n a n
3 n a n a $ b a n
4 b a n a n a $ b
5 $ b a n a n a $
6 a n a $ b a n a
7 a n a n a $ b a

BWT of banana$

j BWT[j] suffixes of banana$
1 a $ b a n a n a
2 n a $ b a n a n
3 n a n a $ b a n
4 b a n a n a $ b
5 $ b a n a n a $
6 a n a $ b a n a
7 a n a n a $ b a

Some Properties of BWT

� a permutation of T
� Last-to-Front Mapping
◦ reversible [Burrows & Wheeler 94]

◦ searchable [Ferragina & Manzini 00]

� compressible [Manzini 01]

BWT is a permutation of T

j BWT[j] suffixes of banana$
1 a $
2 n a $
3 n a n a $
4 b a n a n a $
5 $ b a n a n a $
6 a n a $
7 a n a n a $

T = b!"!"!#

Last-to-Front Mapping

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

T = b!"!"!#

BWT is Reversible

j BWT[j] first character of suffixes
1 a
2 n
3 n
4 b
5 $
6 a
7 a

T = ???????

BWT is Reversible
(1. Get First Characters)

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

T = ???????

BWT is Reversible
(2. Get LF Mapping)

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

T = ???????

BWT is Reversible
(3. Retrieve Characters in Backward Manner)

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

T = ??????$

BWT is Reversible
(3. Retrieve Characters in Backward Manner)

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

T = ?????a$

BWT is Reversible
(3. Retrieve Characters in Backward Manner)

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

T = ????na$

BWT is Reversible
(3. Retrieve Characters in Backward Manner)

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

T = ???ana$

BWT is Reversible
(3. Retrieve Characters in Backward Manner)

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

T = ??nana$

BWT is Reversible
(3. Retrieve Characters in Backward Manner)

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

T = ?!"!"!#

BWT is Reversible
(3. Retrieve Characters in Backward Manner)

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

T = b!"!"!#

BWT is Searchable

j BWT[j] first character of suffixes
1 a
2 n
3 n
4 b
5 $
6 a
7 a

P = nana

BWT is Searchable

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

P = ???a

BWT is Searchable

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

P = ??na

BWT is Searchable

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

P = ?ana

BWT is Searchable

j BWT[j] first character of suffixes
1 a $
2 n a
3 n a
4 b a
5 $ b
6 a n
7 a n

P = nana

BWT is Searchable

� Main Idea:
If we know the suffix range of a
pattern P, then we can obtain the
suffix range of cP for any char c

� We call this backward search

BWT Real Applications
� Short Read Alignment Problem
◦ Need to locate occurrences of numerous

patterns in a very long genome

� Suffix Tree or Suffix Array take
huge space (64G for Human DNA)

� BWT saves space (1G for Human DNA)

è Core index in BWA, Bowtie, SOAP2

Bi-directional BWT

� BWT searches backwardly

� Can it support forward search?
◦That is, given the suffix range of P,
and a character c, can we get the
suffix range of Pc?

Bi-directional BWT

� If SA is provided, we can solve this
with O(log t) accesses to SA

� Lam et al. (2009) suggested a simple
but elegant solution:
maintain two BWTs, one for T and
the other for T’ (the reverse of T)

Bi-directional BWT

� At any time, we keep track of the
suffix range of P in T, and the suffix
range of P’ in T’

� Next, perform backward search in
BWT of xP’ for every character x

Bi-directional BWT

suffix range of aP’

suffix range of bP’

BWT of T’

…

suffix range of zP’

Bi-directional BWT

� After that, we get the number of
times xP’ occurring in T’
è same as number of times Px

occurring in T
� Use the above to refine the suffix

range of P in T to get the suffix
range of Pc in T

Bi-directional BWT

suffix range of Pa

suffix range of Pb

BWT of T

…

suffix range of Pzsu
ffi

x
ra

ng
e

of
 P

Bi-directional BWT

� Each forward search step takes
O(σ) time
◦ Recently improved to O(1) time by

Belazzougui et al. (2014)

� Lam et al. implemented this, called
2BWT (a part of SOAP2), for locating
short reads with small errors

Tolerant Retrieval Problem

� Input: A list L of m strings
� Query:

Given any query pattern of the form
P, P*, *P, P*Q, or *P*

we can locate the query pattern
in the strings of L (*= wildcard string)

Tolerant Retrieval Problem

� Ferragina and Venturini (2007)
used a single BWT to index L so
that all the queries can be supported
◦ Only 1 line change in search method

� This is called
Compressed Permuterm Index

XPath Query in XML Tree

� Input: A rooted tree X with labeled
nodes

� Query:
Given a query pattern of P, find all
sub-paths in X such that the
concatenation of the labels in the
sub-paths matches P

XPath Query in XML Tree

� Naïve method: Maintain a separate
BWT for the concatenated labels of
each root-to-leaf path in X

� If each node v of X is represented
by the lexicographical order of the
`reverse’ of the corresponding path
labels, the BWTs can be merged and
also searchable [Ferragina et al. 05]

XPath Query in XML Tree

� This is called XBW transform

� Can be applied to compress
Aho-Corasick automaton

for dictionary matching problem
without any slowdown
[Belazzougui 10; Hon et al. 10]

When Problems are Harder

� Parameterized Matching [Baker 93]

◦ abba can match with yxxy

� Structural Matching [Shibuya 04]
with focus on RNA strings
◦ AUGCAA can match with GCAUGG

◦ AUGCAA not match with GACUGG

Structural Match
= Parameterized Match + Complement Constraint

When Problems are Harder

� pBWT [Ganguly, Shah, Thankachan 17]

◦ Based on Baker’s encoding to
transform each suffix of T into
another string (so searching is efficient)

◦ LF mapping of encoded suffixes
becomes non-trivial

Text Indexing Problem (revisited)

Can we achieve optimal space?
� CSA [Grossi & Vitter 00; Sadakane 00]

� Many Improvements
ACM Comp Survey [Navarro & Makinen 07]

Open Problem

Can we achieve optimal space and
optimal time simultaneously ?

Geometric BWT

� Hon et al. (2008) observed that one

can reduce 2D orthogonal range

searching into a text indexing

� This is called GBWT

� Leads to some lower bound result in

compressed text indexing

Thanks for Listening

Questions?

